量子點(Quantum Dot)及量子點光電應用

An exciton is composed of an electron and a hole. The effective distance between the electron and the hole within an exciton is called Bohr radius of the exciton.

When the length of a semiconductor is reduced to the same order as the exciton radius, i.e., to a few nanometers, quantum confinement effect occurs and the exciton properties are modified.

For a spherical II-VI semiconductor QD, using the confined Wannier exciton Hamiltonian, the energy expression can be modified to give:

The treatment is like an electron in hydrogen-like orbital

For the electronic transition from the valence band to conduction band (n =1), ignoring small contributions from 1 / R term (strong confinement region):

 ΔE_q =change in band gap energy due to quantum-size effect

$$E_g(R) = E_g + \frac{\hbar^2}{2R^2} \left(\frac{1}{m_e} + \frac{1}{m_h}\right)$$

As $R \downarrow E_g(R) \uparrow \lambda \downarrow$ (Absorption wavelength decreases as QDs particle size decreases)

Energy Level (VB/CB) of Various Semiconductors

What should we know-Type I & Type II

Control band gap by varying the CdSe size

CdSe/ZnS

Energy level alignment

Synthetic Protocol in My Lab

CdSeSZnS Alloy Quantum Dots for QLED

Mass Production: 50-100 g/pot

Solar Energy Cell Lighting

Best Research-Cell Efficiencies For Various Types of Solar Cells

Unique Photophysical Process for QDs in Solar Energy Cell

Auger Process: Multi-exciton Generation

Important Gaining Factor for Photovoltaic

The application of **Quantum Dots** in solar energy

四類型量子點太陽能電池的結構(a)混合塊材異質結面太陽能電池(b)Schottky結面太陽能電池(c)量子點敏化太陽能電池(d)空乏區異質結面量子點太陽電池

QDs surface modification-organic ligands

ACS nano., 2014, 5863-5872

QDs surface modification-Inorganic ligands

Advanced Materials, 25, 5772 (2013)

(2) Schottky結面太陽能電池 (Schottky junction solar cell)

(a)元件組成示意圖與量子點吸收圖譜(b)清洗4次的硫化鉛量子點組成元件的I-V曲線(c)不同清洗次數的硫化鉛點組成元件的I-V曲線與費米能階平衡後的能帶示意圖(d)清洗4次的硫化鉛量子點組成元件的吸收圖譜

Energy Environmental Science, 6, 3054 (2013).

(c)量子點敏化太陽能電池

化學沉澱法(chemical bath deposition, CBD)或連續 離子吸附法(SILAR)將量子點直接成長在二氧化鈦上

QDSC vs. DSSC	QDSC	DSSC
Active layer	Quantum dots	Organic dye
Electrolyte	S ²⁻ /S _n ²⁻ (avoid metal corrosion)	I ⁻ /I ₃ -

Voltage (V)

Scientific Reports, **3**, 1050 (2013)

(4)空乏區異質結面量子點太陽電池 (p/n type solar cells)

Built-in potential can reduce exciton recombination

Nature Nanotechnology, 7, 577 (2012)

串疊(Tandem)太陽能電池

(5) The QDs Solar Concentrator

Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators

Hongbo Li † , Kaifeng Wu † , Jaehoon Lim, Hyung-Jun Song and Victor I. Klimov*

Wavelength (nm)

CdSe/Cd1-xZnxS g-QDs

Nature Energy **2016**, DOI: 10.1038

These values yield h_{ext} of about 1.9%, which is about a factor of 3.4 below the `break-even' efficiency

Application of Quantum Dots Emphasis in QLED

Hurdles in QD-LED: Auger Recombination, Instability (Oxygen, H₂O)

Another Auger Process: Auger Recombination

Retardation Factor for QLED

Controlled Alloying of the Core—Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination

Wan Ki Bae,[‡] Lazaro A. Padilha,[‡] Young-Shin Park, Hunter McDaniel, Istvan Robel, Jeffrey M. Pietryga,^{*} and Victor I. Klimov^{*}

VOL. 7 • NO. 4 • 3411-3419 • 2013

High-efficiency quantum-dot light-emitting devices with enhanced charge injection

Benjamin S. Mashford¹, Matthew Stevenson¹, Zoran Popovic¹, Charles Hamilton¹, Zhaoqun Zhou¹, Craig Breen¹, Jonathan Steckel¹, Vladimir Bulovic², Moungi Bawendi³, Seth Coe-Sullivan¹ and Peter T. Kazlas¹*

nature

Solution-processed, high-performance light-emitting diodes based on quantum dots

Xingliang Dai¹, Zhenxing Zhang², Yizheng Jin¹, Yuan Niu², Hujia Cao², Xiaoyong Liang¹, Liwei Chen³, Jianpu Wang⁴ & Xiaogang Peng²

PMMA is prepared to be the electron transporting layer because of the balancing exciton and tunneling effect .

Nature 515, 96–99, 2014.

QD-LED Progress in My Lab

量子點相關材料未來市場預估

	Home About Us Briefings Top Market Reports Careers Contact U Login Password Password Go
MARKETSANDMARK	ETS Subscription Press Releases Custom Research Services Consulting Research Insight Events
Connect With Us Live Chat Support	HOME > Top Market Reports > Quantum Dot Market by Product (Display, Medical Devices, Batteries, Solar Cells, Sensors, and Others), Material, Application (Healthcare, Consumer, Defense, and Industry), and Geography-Forecast up to 2020 Quantum Dot Market by Product (Display, Medical Devices, Batteries, Solar Cells, Sensors, and Others), Material, Application (Healthcare, Consumer, Defense, and Industry), and Geography-Forecast up to 2020
US:1-888-600-6441 UK:44-800-368-9399 sales@marketsandmarkets.com	By: marketsandmarkets.com Publishing Date: January 2015 Report Code: SE 3146
Search reports Keywords	Get Free 10% Customization in This Report Speak to Analyst Inquiry Before Buying Analyst Reinfing
Q0 →	Single User License :: US \$ 5650 V BUY NOW Download PDF Brochure Request for Customization

The QD-based market research report takes an insight into the market through market size forecasts, value chain, market & product trends, competitive landscape, leading participants and their key developments, strategies, and profiles. It also analyzes the market by product, application, and material. The report also deals with all driving factors, restraints, and opportunities with respect to the global quantum dots market, which are helpful in identifying trends and key success factors for the industry. The report also provides an in-depth view on the material and, product markets, along with drivers, opportunities, and restraints of the quantum dot market. The quantum dot market is estimated to reach \$4,704.86 million by 2020, at a CAGR of 63.61% from 2014 to 2020.

2020年 → 47 億美元 = 1500 億新台幣

Thank You for the Attenetion

