Sustainable Resource Management Workshop hosted by CTCI, 5-6 October 2009, Taipei

Course B (for Academic and Research Institute)

Designing and evaluating material cycle systems and related policy / management techniques - Case studies -

### Yuichi Moriguchi, Dr. Eng.

Director

Research Center for Material Cycles and Waste Management National Institute for Environmental Studies, Japan



1

Visiting Professor, Graduate School of Frontier Sciences, The University of Tokyo

Vice Chair (Ex-Chair), OECD/EPOC/WGEIO

Member, International Panel for Sustainable Resource Management





## **General framework of Material Flow Analysis**



## Material flow related analyses and associated issues of concern

| Issues of concern               | Specific concer<br>supply se                                                             | rns related to environ<br>ecurity, technology dev                                                                                               | General environmental and economic concerns related to<br>the throughput |                                                                                   |                                                                                                          |                                                                                                                    |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | businesses, ec                                                                           | within certain<br>conomic activities, cou                                                                                                       | ntries, regions                                                          | of<br>substances, materials, manufactured goods                                   |                                                                                                          |                                                                                                                    |  |  |  |
|                                 |                                                                                          | associated with                                                                                                                                 |                                                                          |                                                                                   | at the level of                                                                                          |                                                                                                                    |  |  |  |
| Objects of primary              | Substances                                                                               | Materials                                                                                                                                       | Manufactured<br>goods                                                    | Businesses                                                                        | Economic<br>activities                                                                                   | Countries, regions                                                                                                 |  |  |  |
| interest                        | chemical<br>elements or<br>compounds<br>e.g. Cd, Cl, Pb,<br>Zn, Hg, N, P, C,<br>CO2, CFC | raw materials and<br>semi-finished goods<br>e.g. energy carriers,<br>metals (ferrous, non-<br>ferrous), sand and<br>gravel, timber,<br>plastics | e.g. batteries, cars,<br>computers                                       | e.g. firms,<br>companies, plants,<br>medium sized and<br>big enterprises,<br>MNEs | e.g. production<br>sectors, chemical<br>industry, iron and<br>steel industry,<br>construction,<br>mining | e.g. aggregate mass of<br>materials<br>(& related materials<br>mix),<br>groups of materials,<br>selected materials |  |  |  |
| Type of<br>analysis             | Ia<br>Substance<br>Flow Analysis                                                         | Ib<br>Material System<br>Analysis                                                                                                               | Ic<br>Life Cycle<br>Analysis                                             | IIa<br>Business level<br>MF analysis                                              | IIb<br>Input-Output<br>Analysis                                                                          | IIc<br>Economy-wide MF<br>Analysis                                                                                 |  |  |  |
|                                 | ¢                                                                                        | ¢                                                                                                                                               | ¢                                                                        | ¢                                                                                 | ¢                                                                                                        | ¢                                                                                                                  |  |  |  |
| Type of<br>measureme<br>nt tool | Substance<br>Flow Accounts                                                               | Individual<br>Material Flow<br>Accounts 🗘                                                                                                       | Life Cycle<br>Inventories<br>(MF<br>Inventories)                         | Business<br>Material flow<br>accounts                                             | Physical Input-<br>Output Tables<br>ⓒ ⊙,<br>NAMEA-type<br>approaches ⊙                                   | Economy-wide<br>Material Flow<br>Accounts 오                                                                        |  |  |  |

O: MFA tools using the materials balance principle. ⊙: MFA tools using national accounting principles fully in line with the SEEA. Source: OECD, based on Bringezu and Moriguchi 2002.

#### Architecture and level of application of MFA tools

When analysing material flows, emphasis can be put on:

• all materials entering and leaving the national economy (top of the Figure);



Source: OECD

## **Key international activities for MFA**

#### Research community

- International Joint Study (AUT, GER, NET, JAP, USA) since 1995
- ConAccount since 1996
- Gordon Conference on Industrial Ecology since 1998
- ISIE(International Society for Industrial Ecology) since 2001
  - Journal of Industrial Ecology, MIT Press, since 1997

### International (intergovernmental) organizations

- OECD(EA, Waste prevention, De-coupling indicator, Council recommendation on MF & RP)
- EUROSTAT: Methodological guide
- ► EEA/ETCRWM
- UNCEEA (UN Committee of experts on Environmental and Economic Accounting)

#### OECD, IE, ConAccount and other MFA meetings in last decade

SCOPE WS on Indicators of SD, November 1995, Wuppertal ConAccount Workshop, January 1997, Leiden ConAccount Conference, September 1997, Wuppertal 1<sup>st</sup> Gordon Conference on IE, June 1998, New London (NH) ConAccount Workshop, November 1998, Amsterdam 2<sup>nd</sup> Gordon Conference on IE, June 2000, New London (NH) OECD MFA / WMF-RP seminar, October 2000, Paris ConAccount Conference, April 2001, Stockholm 1<sup>st</sup> ISIE Conference, November 2001, Noordwijkerhout 3<sup>rd</sup> Gordon Conference on IE, June 2002, New London (NH) 2<sup>nd</sup> ISIE Conference, June-July 2003, Ann Arbor (MI) ConAccount Workshop, October 2003, Wuppertal Int'l expert WS on MFA & RP, November 2003, Tokyo OECD workshop on MFA, June 2004, Helsinki 4th Gordon Conference on IE, August 2004, Oxford ConAccount Meeting, October 2004, Zuerich OECD workshop on MFA, May 2005, Berlin 3rd ISIE Conference, June 2005, Stockholm OECD workshop on SMM, November 2005, Seoul OECD workshop on MFA, May 2006, Rome 5th Gordon Conference on IE, August 2006, Oxford ConAccount Meeting, September 2006, Vienna 4th ISIE Conference, June 2007, Toronto OECD/Japan Seminar on MF/RP, September 2007, Tokyo OECD-UNEP Conference on Resource Efficiency, April 2008, Paris 6th Gordon Conference on IE, June 2008, New London (NH) ConAccount Meeting, September 2008, Prague 5th ISIE Conference, June 2009, Lisbon ConAccount Meeting, November 2010, Tokyo

۲

è

۰.

۲

۲

Ó.

è.

ò

۲

•

è.

•

۰.

•

6

è.

•

è.

•

¢.

è.

۰.

•

Ó

## Schematic description of stocks and flows



Source : Moriguchi, prepared for Ernst Strüngmann Forum, Frankfurt, Nov. 2008

#### Presentations at ConAccount 2008 by NIES researchers

- PRODUCT-LEVEL MATERIAL FLOW ANALYSIS OF CONSUMER DURABLES Masahiro Oguchi, Takashi Kameya, Tomohiro Tasaki, Noboru Tanikawa
- HIBERNATING STOCKS OF MOBILE PHONES IN JAPAN Shinsuke Murakami\*, Rie Murakami-Suzuki (\* Univ. Tokyo)
- ANALYSIS OF CAUSAL RELATIONSHIP OF CHANGES IN MATERIAL FLOWS: CONTRIBUTION ANALYSIS AND INFLUENCE ANALYSIS
   Tomohiro Tasaki, Aya Yoshida, Yuichi Moriguchi
- MATERIAL FLOW ANALYSIS BASED ON WIO-MFA MODEL: CASE STUDY OF PVC FLOW IN JAPAN
   Kenichi NAKAJIMA, Yoshie YOSHIZAWA, Kazuyo MATSUBAE-YOKOYAMA, Tetusya NAGASAKA, Shinichiro NAKAMURA
- COMPARISON OF APPROACHES TO MATERIAL STOCK AND FLOW ACCOUNTING Ichiro Daigo\*, Shinsuke Murakami, Yasunari Matsuno, Tomohiro Tasaki, Seiji Hashimoto (\* Univ. Tokyo)
- FRAMEWORK FOR DETERMINING POTENTIAL WASTE ACCUMULATED WITHIN AN ECONOMY AND ITS APPLICATION TO CONSTRUCTION MINERALS IN JAPAN Seiji Hashimoto, Hiroki Tanikawa, and Yuichi Moriguchi

 MULTI-SCALE ESTIMATION OF MATERIAL STOCK RELATED TO CONSTRUCTION MINERALS OVERTIME Hiroki Tanikawa\* and Seiji Hashimoto (Nagoya Univ.)

Extracts from presentation at IIOA 2007, Istanbul July 2, 2007

## Analysis of material flows by Input-Output framework for environmental and resource issues

by Yuichi Moriguchi, Dr. Eng.

Director, Research Center for Material Cycles and Waste Management National Institute for Environmental Studies, Japan

> Visiting Professor, Graduate School of Frontier Sciences The University of Tokyo

Ex-Chair, OECD/EPOC/WG on Environmental Information and Outlooks

## **Background (Demand side)**

Environmental problems associated with massive flows of materials (GHGs, sold waste)

Recognition of "finiteness" of natural resources and environmental carrying capacity in the context of "sustainability"

Transition from mass-production, massconsumption, mass-disposal economy to "Sound material-cycle society" (Japan), "Circular economy" (China)

## Background (Supply side)

Linkage between economic Input-Output analysis and Industrial Ecology studies attracts increasing attention, in relation to;

LCA (Life Cycle Assessment), MFA (Material Flow Analysis/Accounting)

cf. Y. Moriguchi: Symbiosis among Analytical Tools of Industrial Ecology - The Case of MFA, IOA and LCA -, 3rd ISIE Conference, 12-15 June, 2005, Stockholm

## "Inter"-action among actors

Inter-disciplinary
 ISIE 2007 Conference, Toronto Canada
 June 16-20, 2007
 IIOA 2007 Conference, Istanbul Turkey
 July 2-6, 2007

Engineers vs. Economists & Accountants

International
➢ Academic communities
➢ International organizations

Researchers vs. Policy makers

## Target scale/sector of MFA

- International flows (trade, transportation)
- Total inflows and outflows of national economy
- Inter-regional flows
- Inter-industry flows at national economy (I-O analysis)
- Inter-industry flows at a specific area(Eco-Industrial-Park)
- Emissions of pollutants from the economy and their outflows to the environment
- By-products and waste (valueless outputs)

# Application and extension of Input-output framework

- 1. Extension of the system boundary to incorporate the environment
- 2. Description of flows of materials with zero or negative value
- 3. Description of material flows by Physical Input-Output Tables
- 4. Compilation of empirical database for major environmental and natural resource variables
- 5. Symbiosis between IOA, MFA and LCA
- 6. Hybrid approach to combine process data and statistical data
- 7. Application to rapidly growing economies
- 8. From ex-post accounting/analysis to ex-ante modeling

The extension of the system boundary to incorporate the environment

**Physical Interpretation** 

- The Environment as supplier of natural resources to economic activities
- The Environment as recipient of residues from economic activities

**Monetary Interpretation** 

Value added is overestimated because the use of natural capital is not evaluated

## Extension of Economic Input-Output Tables/Analysis



## Cycle in the Socio Economic System and Cycle in the Natural Environment



'9

## Extension of Economic Input-Output Tables/Analysis





## **MFA with Input-Output Framework**



(a) Input-Output relation between economy and the environment

(b) Input-Output table with environmental extension

## **MFA with Input-Output Framework**



# Application and extension of Input-output framework

- 1. Extension of the system boundary to incorporate the environment
- 2. Description of flows of materials with zero or negative value
- 3. Description of material flows by Physical Input-Output Tables
- 4. Compilation of empirical database for major environmental and natural resource variables
- 5. Symbiosis between IOA, MFA and LCA
- 6. Hybrid approach to combine process data and statistical data
- 7. Application to rapidly growing economies
- 8. From ex-post accounting/analysis to ex-ante modeling

| Empirical data                                                     |                                                                    |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| EIO(3EID)                                                          | RIO                                                                |  |  |  |  |  |  |  |  |  |  |
| Monetary IOT                                                       | Monetary IOT<br>(68SNA)                                            |  |  |  |  |  |  |  |  |  |  |
| Physical flows<br>From the economy<br>to the nature<br>(Emissions) | Physical flows<br>from the nature<br>to the economy<br>(Resources) |  |  |  |  |  |  |  |  |  |  |
| 400 sectors                                                        | 86 -> 17 sectors                                                   |  |  |  |  |  |  |  |  |  |  |
| 1975 to 1990, 1990,<br>1995, 2000                                  | 1980 to 1998                                                       |  |  |  |  |  |  |  |  |  |  |
| Available on the web                                               | In house (used for MOE)                                            |  |  |  |  |  |  |  |  |  |  |
| GHG reduction policy<br>"Hybrid" LCA                               | Decomposition of RP                                                |  |  |  |  |  |  |  |  |  |  |

# Application and extension of Input-output framework

- 1. Extension of the system boundary to incorporate the environment
- 2. Description of flows of materials with zero or negative value
- 3. Description of material flows by Physical Input-Output Tables
- 4. Compilation of empirical database for major environmental and natural resource variables
- 5. Symbiosis between IOA, MFA and LCA
- 6. Hybrid approach to combine process data and statistical data
- 7. Application to rapidly growing economies
- 8. From ex-post accounting/analysis to ex-ante modeling

| Empirical data: 3 types                             |                                                     |                                                            |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| EIO(3EID)                                           | RIO                                                 | PIOT                                                       |  |  |  |  |  |  |  |  |  |
| Monetary IOT                                        | Monetary IOT<br>(68SNA)                             | Physical flows<br>among<br>economic sectors                |  |  |  |  |  |  |  |  |  |
| Physical flows<br>From the economy<br>to the nature | Physical flows<br>from the nature<br>to the economy | Physical flows<br>between<br>the economy and<br>the nature |  |  |  |  |  |  |  |  |  |
| (Emissions)                                         | (Resources)                                         |                                                            |  |  |  |  |  |  |  |  |  |
| 400 sectors                                         | 86 -> 17 sectors                                    | 146 sectors                                                |  |  |  |  |  |  |  |  |  |
| 1975 to 1990, 1990,<br>1995, 2000                   | 1980 to 1998                                        | 1990, 1995                                                 |  |  |  |  |  |  |  |  |  |
| Available on the web                                | In house (used for MOE)                             | In house                                                   |  |  |  |  |  |  |  |  |  |
| GHG reduction policy<br>"Hybrid" LCA                | Decomposition of RP                                 | Waste & resource management                                |  |  |  |  |  |  |  |  |  |

## What are described by PIOT ?

## Physical material flows of

- In a natural resources from the environment to the economy
- environmental burdens (pollutants and wastes) from the economy to the environment,
- hidden flows associated with these flows,
   commodities (e.g., raw and refined materials, intermediate and final products) among economic sectors.



### Multi-Dimensional Physical Input Output Tables





## Material resource inputs induced by final demands



# Application and extension of Input-output framework (contd.

- 1. Extension of the system boundary to incorporate the environment
- 2. Description of flows of materials with zero or negative value
- 3. Description of material flows by Physical Input-Output Tables
- 4. Compilation of empirical database for major environmental and natural resource variables
- 5. Symbiosis between IOA, MFA and LCA
- 6. Hybrid approach to combine process data and statistical data
- 7. Application to rapidly growing economies
- 8. From ex-post accounting/analysis to ex-ante modeling

CGER-REPORT

ISSN 1341-4356 COER-D031-2002

#### 産業連関表による 環境負荷原単位データブック(3EID) -LCAのインベントリデータとして-

Embodied Energy and Emission Intensity Data for Japan Using Input-Output Tables (3EIC) —Inventory Data for LCA—

著 者:南臺 规介, 森口 祛一, 東野 達 By Keisuke Nansai, Yuichi Moriguchi & Susumu Tohno

貴壌研究センター ter for Global Environmental Research

 教立行政法人 国立環境研究所 National Institute for Environmental Studies, Japan



Emission factor per energy consumption by fuel, by sector and by furnace-type

Emission inventory by each furnace (in total about 100,000 records) for air pollution control policy

## **3EID** Website

### **3EID**

Embodied Energy and Emission Intensity Data for Japan Using Input-Output Tables



List of embodied environmental intensity

| ANK AV                    | Published by 0    | emer for clobal enviro | nmental Research Nati |
|---------------------------|-------------------|------------------------|-----------------------|
| News and<br>Announcements | What is the 3EID? | Document files         | Data files            |
| Application example       | Developers        | Contact Information    | Link                  |

| Year | Detailed<br>classification    | Small<br>classification        | Middle<br>classification      | Large<br>classification       |  |  |  |  |  |  |  |  |
|------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|--|--|--|--|--|--|--|--|
|      | ♦Producer price basis         |                                |                               |                               |  |  |  |  |  |  |  |  |
| 2000 | • Energy<br>• CO <sub>2</sub> | • Energy<br>• C O <sub>2</sub> | • Energy<br>• CO <sub>2</sub> | • Energy<br>• CO <sub>2</sub> |  |  |  |  |  |  |  |  |
|      | ♦ Consumer price basis        |                                |                               |                               |  |  |  |  |  |  |  |  |
|      | -                             | _                              | -                             | -                             |  |  |  |  |  |  |  |  |

#### News and Announcements

JUL 10, 2007 2000 embodied emission intensities on a comsumer's price basis have been released.

DEC 14, 2006 Renewal of Web site!

|      | Producer price basis                                                                               |                                                                                  |                                                                                                                                                   |   |  |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|
| 1995 | • Energy<br>• CO <sub>2</sub><br>• NO <sub>x</sub><br>• SO <sub>x</sub><br>• SPM<br>♦ Consumer pri | • Energy<br>• CO <sub>2</sub><br>• NO <sub>X</sub><br>• SO <sub>X</sub><br>• SPM | • Energy         • Energy           • CO2         • CO2           • NOX         • NOX           • SOX         • SOX           • SPM         · SPM |   |  |  |  |  |  |  |  |
|      | • Energy<br>• CO <sub>2</sub><br>• NO <sub>X</sub><br>• SO <sub>X</sub><br>• SPM                   | _                                                                                | _                                                                                                                                                 | _ |  |  |  |  |  |  |  |

HOME | News and Announcements | What is the 3EID? | Document files | D Application example | Developers | Contact Information | Link | Sit

| 1990 | Producer price                                                                                                                                    | Producer price basis |                                                                                  |                                                                                  |  |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|      | • Energy         • Energy           • CO2         • CO2           • NOX         • NOX           • SOX         • SOX           • SPM         • SPM |                      | • Energy<br>• CO <sub>2</sub><br>• NO <sub>X</sub><br>• SO <sub>X</sub><br>• SPM | • Energy<br>• CO <sub>2</sub><br>• NO <sub>X</sub><br>• SO <sub>X</sub><br>• SPM |  |  |  |  |  |  |  |  |
|      | • Energy<br>• CO <sub>2</sub><br>• NO <sub>X</sub><br>• SO <sub>X</sub><br>• SPM                                                                  | _                    | _                                                                                | -                                                                                |  |  |  |  |  |  |  |  |

Copyright(C)2002-2006 National Institute for Environmental Studies.

#### Relationship between CO<sub>2</sub> intensities and expenditures of households in Japan



## Japanese CO<sub>2</sub> emissions structure from the viewpoint of final demand (1975-2000)



# Application and extension of Input-output framework

- 1. Extension of the system boundary to incorporate the environment
- 2. Description of flows of materials with zero or negative value
- 3. Description of material flows by Physical Input-Output Tables
- 4. Compilation of empirical database for major environmental and natural resource variables
- 5. Symbiosis between IOA, MFA and LCA
- 6. Hybrid approach to combine process data and statistical data
- 7. Application to rapidly growing economies
- 8. From ex-post accounting/analysis to ex-ante modeling

An essence of Industrial Ecology : Symbiosis

There are a number of players (concepts, approaches, methods, and tools) in the field of industrial ecology.

Each of them has their own background and has been contributing to the progress in industrial ecology.

Considering that the "symbiosis" is one of the key concepts of industrial ecology, we may apply this useful concept to the industrial ecology research itself, by linking different tools so that they get mutual benefits.



## **Possible combinations/contributions**

- IOA to LCA ; Hybrid LCA
- LCA to IOA ; Impact-based knowledge
- MFA to IOA ; Extension of system boundary
- IOA to MFA ; PIOT, Consistent accounting framework
- MFA to LCA ; LCA of meso, macro systems
- LCA to MFA ; Impact-based MFA
- MFA, IOA to LCA: LCA of whole economic activities
- LCA to MFA, IOA: PIOT weighted by impacts

### Matrix to describe relationships between pressures and impacts (learning from LCIA methodologies)



# Application and extension of Input-output framework

- 1. Extension of the system boundary to incorporate the environment
- 2. Description of flows of materials with zero or negative value
- 3. Description of material flows by Physical Input-Output Tables
- 4. Compilation of empirical database for major environmental and natural resource variables
- 5. Symbiosis between IOA, MFA and LCA
- 6. Hybrid approach to combine process data and statistical data
- 7. Application to rapidly growing economies
- 8. From ex-post accounting/analysis to ex-ante modeling

## Hybrid method

Rationale

- Leontief inverse in IOA and matrix method in LCA are mathematically identical
- Combination of top-down statistics and bottom-up technology data has mutual benefits
- Bottom-up of technology data can be compiled as I-O matrix

|                        | Advantages                                                    | Disadvantages                                                                   |
|------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|
| Top-down<br>I-O tables | Completeness in<br>coverage and consistent<br>system boundary | <ul> <li>Delayed, costly data compilation</li> <li>Aggregation error</li> </ul> |
| Bottom-up              | Detailed resolution                                           | Incomplete system                                                               |
| Process data           | Timely data for current                                       | boundary                                                                        |
|                        | and new technology                                            | More costly to cover many sectors                                               |

# Application and extension of Input-output framework

- 1. Extension of the system boundary to incorporate the environment
- 2. Description of flows of materials with zero or negative value
- 3. Description of material flows by Physical Input-Output Tables
- 4. Compilation of empirical database for major environmental and natural resource variables
- 5. Symbiosis between IOA, MFA and LCA
- 6. Hybrid approach to combine process data and statistical data
- 7. Application to rapidly growing economies
- 8. From ex-post accounting/analysis to ex-ante modeling

## Scenario analysis: A case of steel production and consumption in Japan and China



Growth of material consumption vs. GDP





Increasing resource flows

to developing economies



Trade Flow of the Iron in the Asia[2003]

чЭ

## Scenario analysis: A case of steel production and consumption in Japan and China

#### Assumptions

|       | Population    | High grade<br>steel/capita            | Low grade<br>steel/capita | Total<br>consump-<br>tion | Total<br>Production |
|-------|---------------|---------------------------------------|---------------------------|---------------------------|---------------------|
| Japan | 100 million   | 300kg/year                            | 200kg/year                | 50Mt                      | 50-150Mt            |
|       | 1,400 million | · · · · · · · · · · · · · · · · · · · |                           | 500Mt                     | 400-500Mt           |
| China | (Urban 600)   | 300kg/year                            | 200kg/year                | (300Mt)                   |                     |
|       | (Rural 800)   | 100kg/year                            | 150kg/year                | (200Mt)                   |                     |
|       |               | Key p                                 | rocesses                  |                           |                     |
|       |               |                                       |                           |                           |                     |



### Database installed in Material Flow Model

HGS



#### **Typical processes**

- Coal mining in AustraliaCoal mining in China
- Iron ore mining in Australia
  Shipping from Australia to Japan
- •Coke Oven in Japan
- •Blast furnace in Japan
- •Scrap Melting Process
- •Electric furnace in Japan
- •Blast furnace in China
- •Electric furnace in China
- •Power generation in Japan
- •Power generation in China

| 🔀 Mici         | rosoft  | Excel - I | Ms-mfm.xls      |        |                |         |        |          |          |             |       |            |         |                    | J  |
|----------------|---------|-----------|-----------------|--------|----------------|---------|--------|----------|----------|-------------|-------|------------|---------|--------------------|----|
| : <b>N</b> h - | 777 II. | .(F) 編1   | 集(F) 表示(A) 挿    | አጠ ቋቷ( | ານ ພະ-ແຕ       | ೧ ೯೬೩   | സ്റ്   | /KC040 / | <.π.⇒(µ) | Adobe PDE   | (R)   | 質問な入っ      | カレオください | ) I                | 5  |
|                |         |           |                 |        |                |         |        |          |          |             |       |            |         | s−mfm <del>v</del> | 4  |
|                |         |           | Data d          | noot f | ford           | lon     | non    | t co     | mna      | sciti       | on (  | \ <b>f</b> |         |                    | 1  |
|                |         | _         | Data SI         | leet 1 |                | ien     | Ien    | i co     | աթզ      | <b>JSIU</b> | UII ( | Л          |         | = = =              | 穻  |
|                |         |           |                 |        |                | 4       | •      |          | -        |             |       |            |         |                    | ï  |
|                | A       | В         | С               | E      | <sub>G</sub> n | iat     | erna   | IS,      | К        | L           | м     | N          | 0       | Р                  |    |
| 1              | CG      | ioodsAr   | GoodsName       | unit   | s-unit         | s-fct   | ktoe/s | #C       | #H       | #0          | #N    | #S         | #A      | #Fe                | ſ  |
| 2              | J       | PN        | Pig Iron        | kt     | kt             | 1.000   | 0.000  | 5.0%     | 0.0%     | 0.0%        | 0.0%  | 0.0%       | 0.0%    | 95.0%              | Г  |
| 5              | J       | PN        | Iron Scrap      | kt     | kt             | 1.000   | 0.000  | 0.0%     | 0.0%     | 0.0%        | 0.0%  | 0.0%       | 5.0%    | 95.0%              | Г  |
| 20             | J       | PN        | Sintered Ore    | kt     | kt             | 1.000   | 0.000  | 1.5%     | 0.0%     | 29.1%       | 0.0%  | 0.0%       | 10.9%   | 58.5%              | Г  |
| 21             | J       | PN        | Iron Ore        | kt     | kt             | 1.000   | 0.000  | 0.0%     | 0.0%     | 29.3%       | 0.0%  | 0.0%       | 2.5%    | 68.2%              | Г  |
| 22             | J       | PN        | Limestone       | kt     | kt             | 1.000   | 0.000  | 12.0%    | 0.0%     | 32.0%       | 0.0%  | 0.0%       | 56.0%   | 0.0%               | Г  |
| 23             | J       | PN        | Oth Iron Source | kt     | kt             | 1.000   | 0.000  | 0.0%     | 0.0%     | 0.0%        | 0.0%  | 0.0%       | 50.0%   | 50.0%              | Γ  |
| 24             | J       | PN        | Oth Ind Mineral | kt     | kt             | 1.000   | 0.000  | 0.0%     | 0.0%     | 0.0%        | 0.0%  | 0.0%       | 100.0%  | 0.0%               | Г  |
| A.E.           |         | nu l      | A!              | 1.4    | 1.4            | 4 0 0 0 | 0.000  | 0.00     | 0.04     | 0.00        | 0.00  | 0.00/      | 100.04  | 0.01/              | Ē  |
| Excel - N      | Ms−mfi  | m.xls     |                 |        |                |         |        |          |          |             |       |            |         |                    | 17 |

#### Data sheet for material Input-Output of each

|      | A B        | С                   | D                           | E      | F         | DEOC          | 289      | I      | J      | К      | L     | M     | N   |       |
|------|------------|---------------------|-----------------------------|--------|-----------|---------------|----------|--------|--------|--------|-------|-------|-----|-------|
| 1    | (+ Proc +  | ProcessName         | <ul> <li>P-Class</li> </ul> | - Mai- | GoodsAr - | GoodsName     | - Unit - | #A 👻   | #B 👻   | #C 👻   | MBC - | MAT - | CMB | - ENG |
| 458  | JPN        | Blast Furnace       | Steel                       | *      | OUT       | PM10          | t        | 0.000  | 0.000  | 0.000  | -     | -     |     | 2     |
| 459  | JPN        | SMP                 | Steel                       | 0      | JPN       | Pig Iron      | kt       | -1.000 | -1.000 | -1.000 | 1     | 1     |     | -     |
| 460  | JPN        | SMP                 | Steel                       | 0      | JPN       | Pig Iron (BF) | kt       | 0.345  | 0.345  | 0.345  | 1     | 1     |     | -     |
| 461  | JPN        | SMP                 | Steel                       | 1      | JPN       | Iron Scrap    | kt       | 0.735  | 0.735  | 0.735  | 1     | 1     |     | -     |
| 462  | JPN        | SMP                 | Steel                       | 0      | JPN       | Limestone     | kt       | 0.150  | 0.150  | 0.150  | 1     | 1     |     | -     |
| 463  | JPN        | SMP                 | Steel                       | 0      | JPN       | Steam Coal    | kt       | 0.145  | 0.145  | 0.145  | 1     | 1     |     | -     |
| 464  | JPN        | SMP                 | Steel                       | 0      | OUT       | Used Tires    | kt       | 0.050  | 0.050  | 0.050  | 1     | 1     |     | 1     |
| 465  | JPN        | SMP                 | Steel                       | 0      | JPN       | SMPG          | kt       | -0.492 | -0.492 | -0.492 | 1     | 1     |     | - /   |
| 466  | JPN        | SMP                 | Steel                       | 0      | OUT       | Slag          | kt       | -0.150 | -0.150 | -0.150 | 1     | 1     |     | - /   |
| 467  | JPN        | SMP                 | Steel                       | 0      | JPN       | ELE.IS        | GWh      | 0.046  | 0.046  | 0.046  | -     | -     |     |       |
| 468  | JPN        | SMP                 | Steel                       | *      | OUT       | 02            | M.m3     | 0.160  | 0.160  | 0.160  | 1     | -     |     | -     |
| 469  | JPN        | SMP                 | Steel                       | 0      | OUT       | energy loss   | ktoe     | 0.000  | 0.000  | 0.000  | -     | -     |     | -     |
| 470  | JPN        | SMP                 | Steel                       | 0      | OUT       | EF            | kha      | 0.000  | 0.000  | 0.000  | -     | 2     |     | -     |
| 471  | JPN        | SMP                 | Steel                       | 0      | OUT       | CO2.JPN       | kt       | 0.000  | 0.000  | 0.000  | 1     |       |     |       |
| 472  | JPN        | SMP                 | Steel                       | 0      | OUT       | Oth Gas       | kt       | 0.000  | 0.000  | 0.000  | 1     | 2     |     | -     |
| 473  | JPN        | SMP                 | Steel                       | 0      | OUT       | 02            | kt       | 0.000  | 0.000  | 0.000  | 1     | 2     |     | -     |
| 474  | JPN        | SMP                 | Steel                       | *      | OUT       | NOx           | t        | 0.000  | 0.000  | 0.000  | -     | -     |     | 2     |
| 475  | JPN        | SMP                 | Steel                       | *      | OUT       | SOx           | t        | 0.000  | 0.000  | 0.000  | -     | -     |     | 2     |
| 476  | JPN        | SMP                 | Steel                       | *      | OUT       | PM10          | t        | 0.000  | 0.000  | 0.000  | -     | -     |     | 2     |
| 14 4 | ► ►I\Elm / | Ems/Warn <u>Tec</u> | Srv Tec+ /R                 | es/    | IDAI      | D' - I        | - 1.4    | 1 000  | 1 000  | 4 000  |       |       |     |       |
| ועדב | 4          |                     |                             |        |           |               |          |        |        |        |       |       |     |       |

## **Outputs from Material Flow Model**



WIO and WIO-MFA by Prof. Shinichiro Nakamura

Next several slides are provided by the courtesy of Prof. Shinichiro Nakamura, Waseda University, in order to introduce an outline of WIO and WIO-MFA.

## MFA, Mass Conservation and IOA

- Mass balance principle: the core of MFA (Voet, HBIE 2001)
- Waste flow must be properly taken into account
  - Yields of input cannot be 100%.
    - Input = Output + Waste
  - The conventional IOA does (Strassert, HBIE 2001):
    - *Not* consider the flow of waste, and
    - Not meet the mass balance principle.
- Double counting must be avoided:
  - A clear definition of *materials* in MFA needed!
  - There is no general consensus on a methodological framework for MF accounting and analysis (Bringezu and Moriguchi, HBIE 2001)

### WIO-MFA: a model of MFA based on WIO: (Nakamura and Nakajima, Mater. Trans. 48-12, 2005)

- Advantages of using WIO:
  - explicit consideration of the flow of waste.
  - not only descriptive, but provides analytical model as well.
- WIO—MFA
  - A physical WIO that meets the mass balance principle.
  - An analytical model of MFA
  - An explicit definition of *materials* that avoids double counting
  - Estimate the material content of product that makes possible
    - conversion of a MIOT into an MF accounting (PIOT): fully consistent with the concept of MIOT, which may not be the case for a PIOT that is made from scratch (Weisz and Duchin, 2006)
      - a simultaneous estimation of MF accounting for an arbitrary number of materials

A schematic representation of triangularity between *Resources*, *Materials*, and *Products* 



#### Implementation: Japanese WIO (2000) Materials (10<sup>3</sup>kg): Materials (10<sup>3</sup>kg): 11 metal types 9 plastic types Iron 1 1. Thermo-setting resins 2. Aluminum 2. Polyethylene (low density) Copper 3. 3. Polyethylene (high Lead 4. density) 5. Zinc 4. Polystyrene Ferro alloy 6. 5. Polypropylene Iron scrap 7. 6. Vinyl-chloride resins Aluminum scrap 8. 7. High-performance Copper scrap 9. resins 10. Lead scrap 8. Other resins 11. Zinc scrap 9. Waste plastic > Resources: 12 types Products: 408 types

## Metal & plastic composition of products



Source: Prof. S. Nakamura, Waseda University