

Introduction to Sustainable Resources Management Center

Hwong-wen Ma 2010/3/2

Missions

- Promoting Taiwan's sustainable resource management strategies so as to upgrade resource productivity.
- Applying MFA to develop sustainable production model and consumption patterns.
- Developing theories, strategies and tools which meet the abovementioned missions.

Objectives

Standardize procedure of MFA

Develop advanced tools of material flow and impact assessment

Identify suitable indicators and Monitor anthropogenic Metabolism

Perform and share case studies

Establish MFA application database

Provide technical assistance for business to undertake resource management

Evaluate and suggest policy for government

Method development and standardization

Substance-based Risk Assessment

Regional Risk Assessment of Chromium Based on MFA

Taiwan EIO-LCA analysis

Integration of a wide range of impacts

	49 sector impacts	s\14	Global warming	Resourc depletic	e on	Hum Heal	an th	Ozone depletion		Acidificat ion	Impact indic	ator
	Agriculture											
	Industries											
	Electronics											
	Food production											
	Chemical production											
	Service											
	Total Impact											
	Invento	ory										
	TSP	PM ₁₀	SOx	NOx	NMF	IC	CO	Pb	BOD	COD	SS	
	CO ₂ eq	Water	Electricity	Dioxin	Pb		Cd	Hg	Coal	Oil	Natural Gas	
Municipal Solid Waste			Industry waste				Steel demand		Fossil	Fossil fuel demand		

EIO-LCA in-depth discussion

Impact by sector

- Emission / Unit Demand
- Impact / Unit Demand
- Impact from each sector
- Impact from household consumption
- Impact driven by import and export

Impact by sub-region

- Household demand induced impact over all counties
- Regional comparison of supply and environmental loading
- Scenario comparison of sustainable consumption
 - Sensitivity of consumption style on impacts
 - Impact by regional consumption behavior
 - Energy tax

TWM-LCA model

Impact Catego	ories	Category Indicator	Characterization Model		
	carcinogenic	kg-eq Bezene _{air}	CalTOX with local parameters		
Human toxicity	noncarcinoge nic	kg-eq Toluene _{air}			
Respiratory		kg-eq PM2.5 _{air}	TRACI		
Photochemica	al oxidation	kg-eq NOx _(air)	TRACI		
Aquatic ecoto	oxicity	kg-eq 2,4- D _(water)	TRACi and IMPACT2002+ localized		
Terrestrial eco	otoxicity	kg-eq 2,4-D _(soil)			
Aquatic eutro	phication	kg-eq PO ₄ -	IMPACT2002+		
Aquatic acidif	ication	kg-eq SO ₂	IMPACT2002+		
Global warmi	ng	kgeq CO2 into air	IPCC(2001)		
Ozone layer d	epletion	kg-eq CFCs- 11 _(air)	Latest value from WMO		
Energy consu	mption	MJ	CED by Ecoinvent		
Mineral extra	ction	MJ surplus	EcoIndicator 99		

Consumption style analysis

Impact due to import and export

Consumption based impact for each region

Little Decoupling of GDP & Impact

Direct and Indirect Impacts of sectors

Case studies

Case study with China Steel Corporation (CSC) in 2010

CSC Project Objectives

Implementing the inventory of iron/carbon input & output for whole steel production process units.

Establishing the iron/carbon flow

Evaluating the MFCA (Material Flow Cost Accounting) applied in CSC.

Supplying the policy suggestion for improving resource productivity or reducing environmental impact for CSC future.

TMR (Total Material Requirement)=DMI+Domestic Hidden Flows+Foreign Hidden Flows

DMI (Direct Material Input)=Domestic Extraction+Imports

NAS (Net Additions to Stock)=DMI-DPO-Exports

TDO (Total Domestic Output)=DPO+Domestic Hidden Flows

DPO (Domestic Processed Output)=DMI-Net Additions to Stock-Exports

Policy and management suggestions

Thanks for your attention

CTCI, NTU