Strengthening Adaptive Capacity of Water Supply Systems to Climate Change - the Danshuei River Watershed

Prof. Ching-pin Tung (童慶斌) Bioenvironmental Systems Engineering National Taiwan University

Prof. Pao-shan YU (游保杉) Hydraulic and Ocean Engineering National Cheng Kung University

Prof. Ming-hsu Li (李明旭) Institute of Hydrological and Oceanic Sciences National Central University

National Taiwan University

Contents

- Background and Goals
- Analysis of Current Hydrology
- Assessment of Climate Change Impacts
- □ Adaptations
- □ Final Remarks

Background

- Extensive development requires more resources and discharges more pollutants, which may degrade eco-environment.
- □ Sustainable development requires to meet the needs of both current and future generations.
- Development of sustainable watershed management plans is crucial, and changing climate is the most important challenge and should be seriously considered.

Sustainable Development Laboratory

- Water resources engineering is designed according to physical rules and statistic information derived from historical observation.
- Those statistics are assumed to be constant in design process.

□ Climate not only changes but also is changing.

- Can hydrological statistics be constants?
- Can water resources systems still provide reliable services in future?
- How and what should we do?

Goals of our study

- Evaluating the reliability of water supply systems.
- Identifying effective strategies to strengthen adaptive capacity of water supply systems, which can
 - Continuously support social and economic developments and
 - Sustainably conserve eco-environment

Study Area - the Dan-Shuei River Watershed

Sustainable Development Laboratory

Analysis of Current Hydrology

National Taiwan University

Trend of Rainfall Intensity [Prof. Li (李明旭), NCU]

Trend of Dry Day durations

Trend of flow/rainfall ratio Fei-Tsui Reservoir [Prof. Li (李明旭), NCU]

Assessment of Climate Change Impacts

National Taiwan University

Methodology

- Development of systematic tools to identify vulnerable components of water supply systems
 - Natural components
 - □ Atmosphere climate and weather
 - □ Hydrosphere Stream flows, groundwater
 - Human components
 - Facility reservoirs, treatment plants, distribution systems
 - □ Management plans demands and operations

Procedures

Downscaling Methods

- Simple Downscaling
 - Climate changes of a local area are assumed the same as the nearest grid point
- Statistical Downscaling
 - Finding the statistical relationships between regional climate and local climate.

Statistical Downscaling Model SDSM Version 4.1

Future Climate Scenarios

	CGCM2	
	ECHAM4	
	HADCM3	HADCM3
GCMs	CCSR/NIES	
	R30(GFDL)	
	CSIRO-Mk2	
SRES	A2 \ B2	A2 \ B2

Impacts on Stream Flows [Prof. Yu (游保杉), NCKU]

HBV Model

Parameters

- *FC*(Field Capacity)
- $\beta \land LP (Parameter)$
- UZL(Outflow height)
 - Recession Coefficient
 - $\square \quad K_0(\text{UZL})$
 - $\square \quad K_1 (\text{upper tank})$
 - $\square \quad K_2 (\text{lower tank})$
- *Ce* (coefficient of ET)
- *PERC* (Percolation)

Impacts on Stream Flows Dry Period [Prof. Yu (游保杉), NCKU]

100

Fei-Tsui Reservoir Inflows 20 Scenarios Scenarios HAD3 A2 A2 HAD3 B2 **B**2 Simulation Simulation 16 16 Flow (mm/day) Flow (mm/day) 12 12 8 8 4 -4 0 0 20 80 40 60 0 20 80 0 40 60 100 **SDSM Downscaling** Simple Downscaling

Sustainable Development Laboratory

Impacts on Reservoir (C.P. Tung)

李子子 (1)

National Taiwan University

Water Supply

Bioenvironmental Systems Engineering

Flood Mitigation

Modifications of Operational Rules due to More Extreme Events_HADCM3

Impacts on Water Supply (C.P. Tung)

National Taiwan University

Water Supply System Dynamics Model - the Sindian and Dahan River

Water Supply System Dynamics Model - the Sindian and Dahan River

The Sindian Water Supply System Dynamics Model

Keelung Water Supply System Dynamics Model

Sustainable Development Laboratory

Bioenvironmental Systems Engineering

有勢学

Current Water Supply Capability (1991~2001, unit: 10⁴ CMD)

	W/O Bar	I Project	W/ Ban I Project		
District	Demand	Supply	Demand	Supply	
Taipei	220.9	282.0	220.9 52.6(支援板新)	348.7	
Panyin	70.6	52.2	52.6(臺北支援)		
Danxin	/0.0	54.4	18.0	09.3	
Taoyuan	66.8	108.9	66.8	108.9	
Keelung	22.9	36.3	22.9	36.3	

Sustainable Development Laboratory

Trend of Water Supply Capacity SRES-A2-Simple Downscaling

Trend of Water Supply Capacity SRES-B2-Simple Downscaling

Trend of Water Supply Capacity SRES-A2-SDSM Downscaling

Trend of Water Supply Capacity SRES-B2-SDSM Downscaling

Ability to Meet Water Demand

□ The Taipei District

- Water supply for the Taipei is still sufficient for next 20~30 years, and it can deliver extra water to other districts.
- □ The Banxin District
 - The ability of water supply of the Banxin district may decrease due to reduced streamflows in dry periods. Water delivered from the Taipei district will be a very important strategy.

□ The Taoyuan district

- Water supply may decrease due to lower flows in dry periods.
- Water demand increases significantly, which causes more water shortage.
- Water demand management is very important.
 More water sources and new facility may also be required for the district.

□ The Keelung District

- Although the ability of water supply may increase in the Keelung district, significant increase of demand may still result in water deficit.
- Currently, the utilization rate of the Keelung river is still low, more water treatment facility could be installed to increase water supply.

Principles to Strengthen Adaptive Strategies

- Identify the most vulnerable components and their corresponding strategies.
 - Insufficient water resources?
 - Less flexible water management plan?
 - Too many water demands?

□ Develop an early warning systems to trigger actions.

Key points on Strengthening Adaptive Capacity of Water Supply Systems

Demand Management

- Water Saving
- Land Planning
- Water Management Ability
 - Connecting different systems
 - Natural conservation

New Water Sources & Facility

- Groundwater
- Rainfall Harvesting
- New Treatment Facility

Early Warning Systems to Strengthen Adaptive Capacity

Early Warning and Risk Management Systems

	Systems	Time Scale	Responses
	Real time	Hourly, Daily	Operational Measures
ζ	Seasonal	Season, Half year	Management
	Near-term	Several years	Management
ζ	Long-term	Ten years	Planning Management

Long-term Planning Adaptations to Changing Climate

Ranking Adaptation Strategies

Decision making on Adaptation Actions

- Taking actions depends on several factors, including
 - (1)**Time left to take action**,
 - (2)Uncertainty,
 - (3)Effectiveness in reducing risk & vulnerability,
 - (4)Costs (regret or non-regret)

Action = F(T, U, E, C)

Ranking Tool: Analytic Hierarchy Process

Results

Weightings of all Principles

Cost-Benefit	Time	Effectiveness	Uncertainty
0.374	0.208	0.296	0.122

Weightings of all Alternatives

	SRA	WTPE	DP
Cost-Benefit	0.367	0.572	0.061
Time	0.214	0.393	0.393
Effectiveness	0.293	0.266	0.442
Uncertainty	0.379	0.152	0.469

Ranking

SRA	WTPE	DP		
0.315	0.393	0.292		

Lung-Tan Water Treatment Plant Expansion (WTPE) is the best of the three assessed Adaptative strategies in Taoyuan.

Taiwan Water Resource Assessment Program to Climate Change

- 0 X

TaiWAPCC 1.0

計畫補助:經濟部水利署水利規劃試驗所

學永續發展研究室

結束

English

中文

Functions

- Analyzing historical hydrological data
- Preparing climate scenarios (10 GCMs and 3 SRES scenarios)
- □ Generate daily weather data
- Simulate impacts on stream flows (the HBV and GWLF models)
- Simulate Impacts on water supply systems (Link to a pre-developed system dynamics model, VENSIM)
- Rank adaptation strategies (Analytic Hierarchy

Process) stainable Development Laboratory

Initial Setting

sts lernamno,

National Ta

Weather Generator

HBV MODEL

HBV M	odel	─結果繪圖-									
		ì	壺檔	情境	CSIRO-	MK3_A1B	•	2025s		•	
Reading Simulated Result. Reading Besi_CSIRO-MK3_A Reading Besi_CSIRO-MK3_A Reading Besi_CSIRO-MK3_A Reading Besi_CSIRO-MK3_A Reading Nansi_CSIRO-MK3_ Reading Nansi_CSIRO-MK3_ Reading Nansi_CSIRO-MK3 Reading Sansha_CSIRO-MK3 Reading Sansha_CSIRO-MK3 Reading Sansha_CSIRO-MK3 Reading Dahan_CSIRO-MK3 Reading Dahan_CSIRO-MK3 Reading Dahan_CSIRO-MK3 Reading Dahan_CSIRO-MK3 Reading Dahan_CSIRO-MK3 Reading Dahan_CSIRO-MK3 Reading Kilung_CSIRO-MK3 Reading Kilung_CSIRO-MK3 Reading Kilung_CSIRO-MK3 Reading Kilung_CSIRO-MK3 Reading Kilung_CSIRO-MK3 Reading Kilung_CSIRO-MK3	A1B_N.flo A1B_S.flo A1B_M.flo A1B_L.flo A1B_N.flo A1B_N.flo A1B_N.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo A1B_M.flo	30 - 25 - 20 - 15 - 10 - 5 - 0 -			CSI	RO-MK3_A	A1B_2025s		30 25 20 15 10 5 20	— Besi — Nansi — Sansha — Dahan — Kilung	

More functions will be added

- Better statistical downscaling methods
- Better impact simulation on water resource systems
 - Agricultural Water Demands
 - Groundwater
 - Rainfall Harvesting Systems
 - Water Quality
- Better water resources management tools
 - Conjunction uses of surface and ground water
 - Modification on reservoir operational rules

Seasonal Forecasts and Responses to Climate Variability

Forecasts on water demand and supply
 More flexible management strategies

Seasonal Storage Forecasts - January, February, March (JFM, 2002)

Seasonal Storage Forecasts - February, March, April (FMA , 2002)

Seasonal Storage Forecasts - March, April, May (MAM, 2002)

ustainable Development Laboratory

檔案(F) 編輯(E) 檢視(V) 歷史(S) 書籤(B) 工具(T) 說明(H)

🔇 🗸 🗸 🔥 📮 🖪 🕒 http://sdl.bse.ntu.edu.tw/water01/2006_01.htm

🖥 Banking 🕒 生活分享 🚱 Mobile 01 🍘 PCDVD 📄 TP非官方 🍶 Mail 🝶 Computer 🝶 Bike 🍶 eJournal 🝶 NTU 🝶 Shopping 🚮 News 🚮 Map 🝶 Travel 🕃 Google Translate

關於我們

教學課程 研究領域

研究成果

討論園地

完成

水資源預測
 Flash教學
 研究室成員
 下載專區
 資訊交流

國立台灣大學 生物環境系統工程學系 永續發展研究室 Sustainable Development Laboratory Department of Bioenvironmental Systems Engineering NT.U.

水資源預測

利用中央氣象局長期氣候預報資料進行水庫蓄水量預報

石門水庫過去蓄水量預報結果

回前頁

☆ · G·

年份	一月	二月	三月	四月	五月	六月	七月	八月	九月	十月	十一月	十二月
2006	<u>ج</u>	<u>ج</u>	<u>ی</u>	<u>ج</u>	۶	<u>ب</u>	۶	<u>ج</u>	<u>ج</u>	<u>ب</u>	۶	۶
	CWB	CWB	CWB	CWB	CWB	CWB	CWB	CWB	CWB	CWB	CWB	CWB
2007	<u>ج</u>	<u>ج</u>	2									
	CWB	CWB	CWB									

2006年1月 (一月~三月預報,亦即第1旬~第9旬預報)

© 2007 國立台灣大學 生物環境系統工程學系 永續發展研究室 版權所有,所有內容及圖片未經本站同意不得轉載

Benefits of Applying Seasonal Information

Year	Actua	l		Estimat		
	Stop Farming Area (ha)	Money paid to Farmers (100 Million)	Stop F A (I	'arming rea na)	Money paid to Farmers (100 Million)	Benefits (100 Million)
2002	10,439(3月休耕) 4,700(5月休耕)	11.8 (11.3)	10,	556.4	7.7	+ 4.1(+3.6)
2002	24,749	14.0 (10.0)	case 1	0	0	+14.9(+10.6)
2003		14.9 (10.0)	case 2	7037.6	4.2	+10.7(+6.4)
2004	36,730	36,730 22.0 (27.9) 21,112.8		12.7	+ 9.3(+15.2)	
2006	24,597	16.6 (13.8)		0	0	+16.6(+13.8)
B/C =	NT\$4,960,000,000	3	Total :	+55.6(+49.6)		

Sustainable Development Laboratory

Final Remarks

- Sustainable uses of water resources is our goal.
 The abilities to evaluate climate change and to strengthen adaptive capacity are very important to reach the goal.
- Uncertainty is the major constraint on taking actions. Early warning and risk management systems are very important for adapting to future climate.

Thanks for Listening! All Questions are Welcomed!

> Ching-pin Tung (童慶斌) cptung@ntu.edu.tw