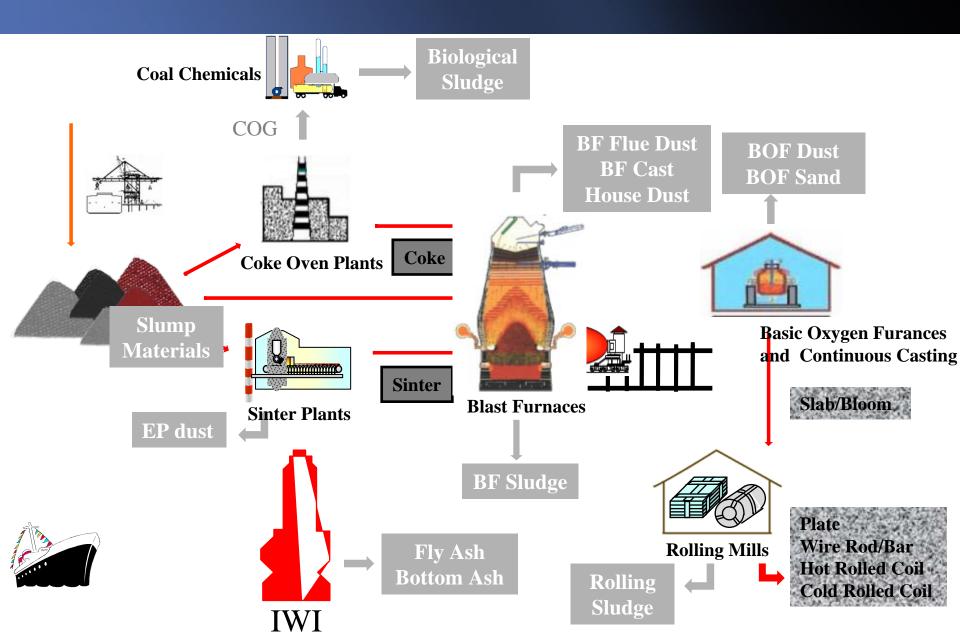
The MFA Application at CSC —The integrated Zinc Control and residual material recycling at CSC



Outline

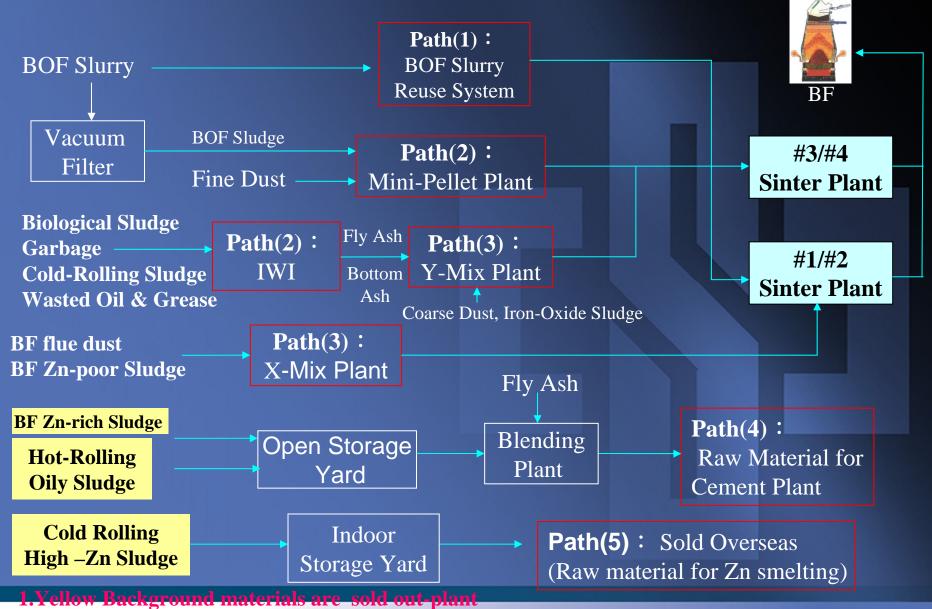
The production and residual materials at CSC
The improvement of integrated recycling system at CSC
The rationalization of the existing integrated system by Zn MFA of BF
The establishment of Rotary Hearth Furnace

The production and residual materials at CSC

The production and residual materials at CSC
The residual materials at CSC
Similar components to the raw material

Reusable property

High Zn content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual materials (the dusts and sludges of the content of some residual mate


The re-oxidized Zn vapor is easy to cling to falling raw materials deteriorating gas permeability

 Easy to combine with fine materials to form scaffold resulting damage of hot blasting tuyeres when scaffolds fall down

Maximize the internal reuse of residual materials under Zn control

Integrated Recycling System Inside and Outside CSC CHINASTEEL

Integrated Dust and Sludge Recycling System of CSC

2.Fine Duct in Supply File Least house > De-s > BOF > W11 /W22 Bag house dust etc. 3.Coarse Dust : Slump Material > BF Flue Dust > IWI Fly Ash > BOF sand > Lime Stone Dust etc. The production and residual materials at CSC

The performance of the system was not satisfactory —The internal reuse of residual materials is too low in order

to reduce the Zn accumulation in BF

Overload of sludge yards

Integrated Zn control need to be improved

The improvement of integrated recycling system at CSC

 The rationalization of the existing integrated system by Zn MFA of BF
 The establishment of Rotary Hearth Furnace

The rationalization of the existing integrated system by Zn MFA of BF

The construction of Zn input and output model

Zn Input = $\sum_{i=1}^{n}$ [Zn (i) ×Input Rate (i)]

Zn inputs for	Input Materials	Input Rate (kg/THM)	Zn Content (%)	Zn Input (gm/THM)	% Contribution
#4 BF	Coke	375	0.0016	6	2.9
	Pulverized Coal	119	0.0010	1	0.5
	Lumpy Ore + Pellets	380	0.0020 8		3.9
	Fluxes	4	0.0012	1	0.5
	Sinter .	1,178	0.0160	188	92.2
	Sub-Total	2,056		204	100.0
#4 Sinter	BOF Slurry	14	0.415	58	30.4
	Coke Breeze	48	0.003	1	0.5
	Fluxes	68	0.005	3	1.6
	Y-Mix	64	0.058	37	19.4
	Raw Mix (without BF Return Fine)	1,211	0.004*	48	25.1
	Mini-Pollet	26	0.170	44	23.0
	Sub-Total	1,431		191**	100.0

Table 4: Calculation of Zn inputs for Mini-Pellet Plant and Y-Mix Plant of CSC.

Zn inputs for	Input Materials	Input Rate (kg/THM)	Zn Content (%)	Zn Input (gm/THM)	% Contribution
Mini-Pellet	BF Flue Dust	8	0.105	8	18.2
	BF Cast House Dust	2	0.239	5	11.4
	Hot Metal Pretreatment Dust	0.4	1.111	4	9.1
	BOF Dust	1	0.698	7	15.9
	BOF Sludge	3	0.418	13	29.5
	Zn-Poor BF Sludge	1.3	0.289	4	9.1
	EP Dust	10	0.033	3	6.8
	Lime Dust	1	0.005	~0	~0
	Subtotal	26.7		44	100.0
Y-Mix	Dried Yard Sludge	3	0.900	27	73.0
	Slump Materials etc	64		10	27.0
	Subtotal	67		37	100.0

The rationalization of the existing integrated system by Zn MFA of BF

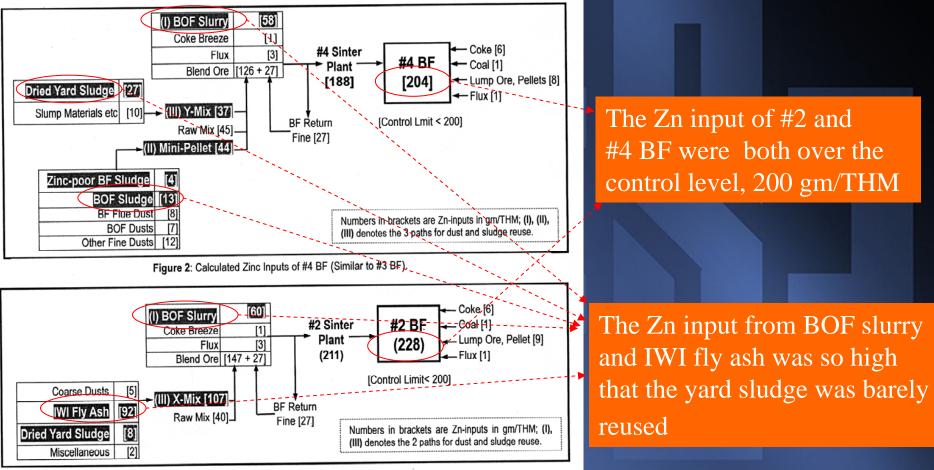


Figure 3: Calculated Zinc Inputs of #2 BF (Similar to #1 BF).

CHINASTEEL

The rationalization of the existing integrated system by Zn MFA of BF

Major Action to increase sludge reusing rate under Zn control
Quality control of the scraps in BOF
Analyze Zn content frequently to control BOF slurry reusing rate
Reduce the Zn content of cold rolling sludge by separating high Zn cold rolling water

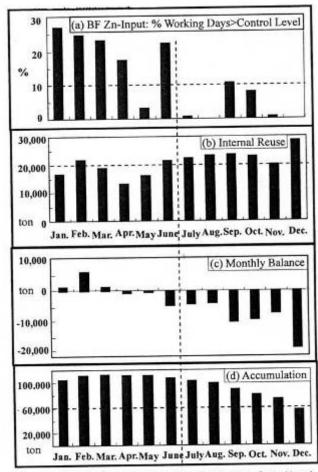
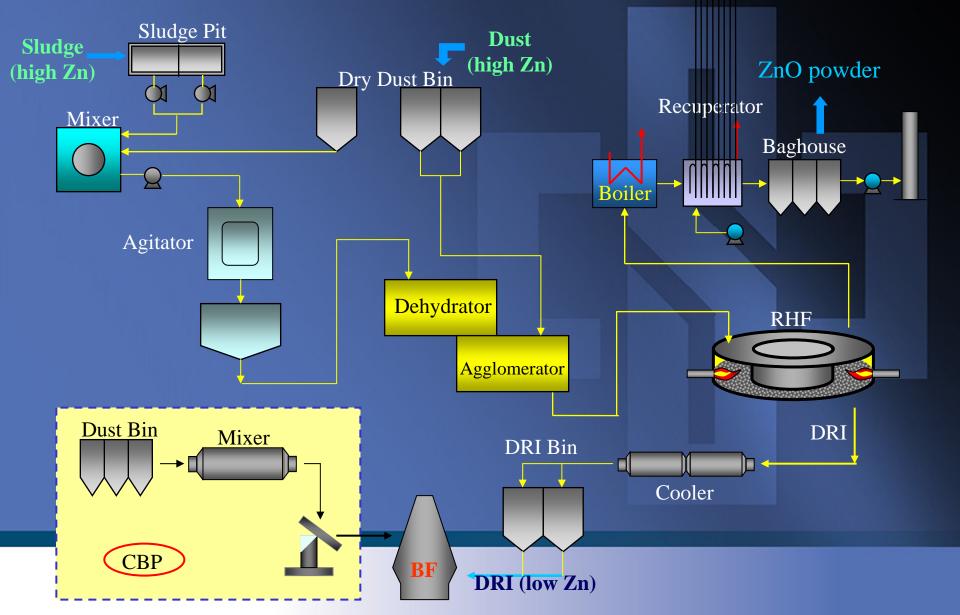
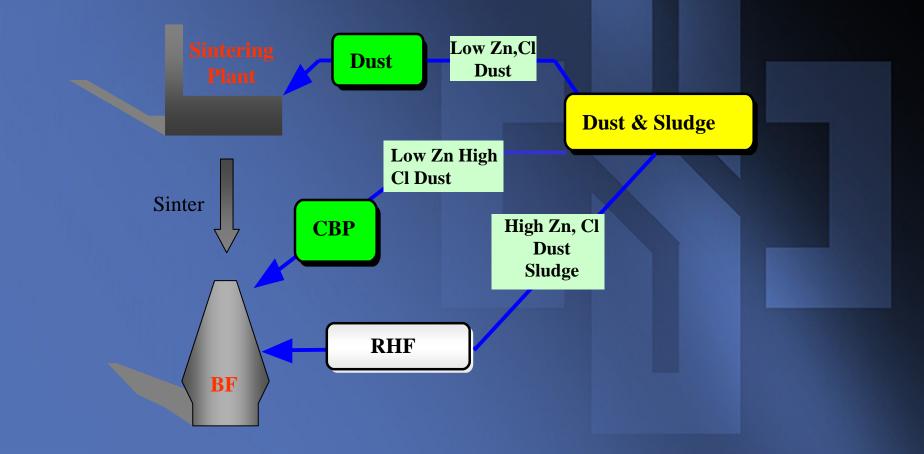


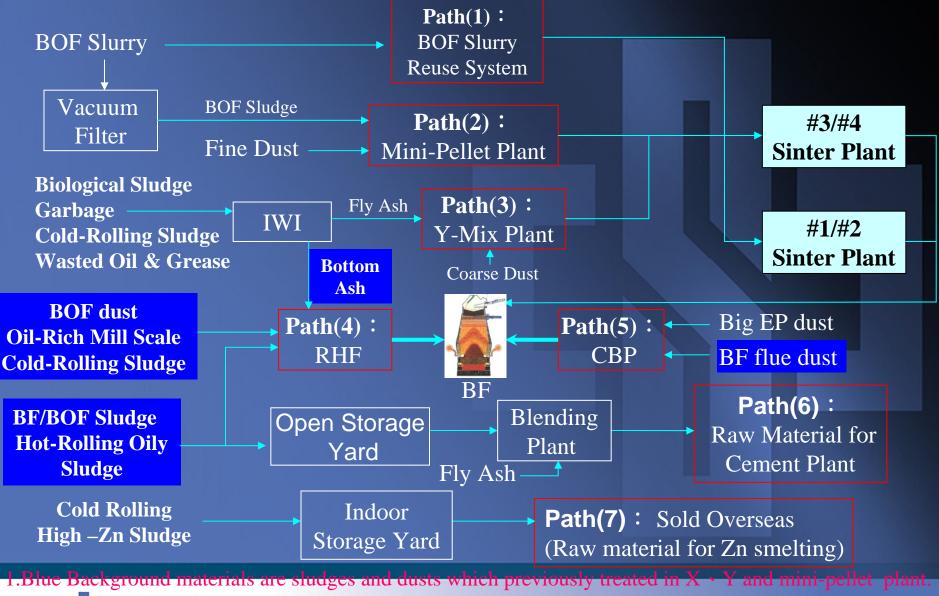
Figure 4: (a)% Working Days that BF Zn-Input Was Over Control Level, (b)Internal Reuse,(c)Monthly Balance, (d)Accumulation of Sludge in 2000



Calculation of Zn input for #4 BF and #4 Sinter Plant of CSC 2008


Zn inputs for	Input Materials	Input Rate (kg/THM)	Zn Content	Zn Input (gm/THM)	%Contribution
# 4 BF	Coke	783	0.0016	12.5	7.7
	Pulverized Coal	152	0.0010	1.5	0.9
	Lumpy Ore + Pellets	432	0.0020	8.6	5.3
	Fluxes	11	0.0012	0.1	0.1
	Sinter	1173	0.012	141	86
	Sub-Total	2551		164	100.0

The establishment of Rotary Hearth Furnace



The establishment of Rotary Hearth Furnace

Integrated Dust and Sludge Recycling System of CSC after RMTP

2.Fine **Dust** : **Complete Strenges** thouse \diamond De-S \diamond Stock house \diamond W11 / W22 Bag House dust etc. 3.Coarse Dust : Slump Material \diamond BOF sand \diamond Lime Stone Dust etc.

The establishment of Rotary Hearth Furnace

Design Recipe of RHF Feedstock						
Residual Materials	Annual Yield	Annual Yield	Yield proportion	Yield proportion	Zn Content(%)	Zn Content(T/Y)
Residuar Materiais	(T/Y) Dry Base	(T/Y) Wet Base	(%)Dry Base	(%)Wet Base		
BOF Dust	4200	4200	3.3	2.4	0.93	39
BOF Slurry	21970	33800	17.1	19.6	0.316	106.8
BF Flue Dust	3426.06	3938	2.7	2.3	0.15	5.9
IWI Fly- Ash	5500	5500	4.3	3.2	0.54	29.7
BF Hi-Zn Sludge	11832.6	18204	9.2	10.5	1.07	194.8
BF Sludge	24669	32892	19.1	19.1	1.26	414.4
Oily Mill Scale	17460	18000	13.6	10.4	0.008	1.4
Oily DW Sludge	37125	49500	28.8	28.7	0.06	29.7
Cold-Rolling Sludge	2640	6600	2	3.8	0.641	42.3
Total	128822.66	172634	100	100		864.1

Separate Zn from residual materials
 Enhance internal reuse of residual materials
 Reduce the cost of external sludge treatment

Conclusion

 The improvement of integrated recycling system of CSC can be achieved by the rationalization of the integrated system via Zn MFA and RHF establishment.
 The rationalization process showed significant improvements of Zn level control and internal residual materials reuse.
 The RHF provided a vision of enhancement of internal residual materials reuse and cost reduction of external sludge treatment.

Thanks for your attention !

