

Challenges and Advances in Site Remediation

Abraham S.C. Chen, Ph.D.,P.E. Stephen H. Rosansky, P.E.

December 2009

Managing Risks

- Water management
- Land management
- Environmental matrices
 - Air
 - Water
 - -Soil
 - Sediment

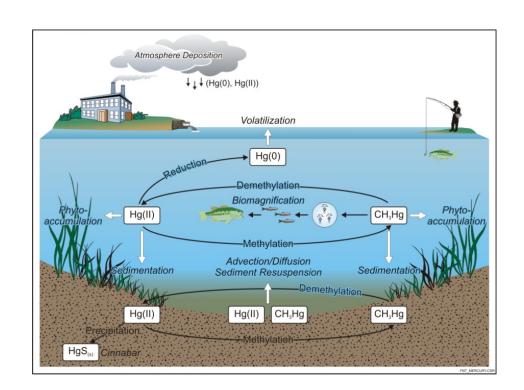
Water Management

- Integrated watershed management approach for
 - Water quality improvement
 - Climate change adaptation with built-in resilience
 - Aging water infrastructure (including green infrastructure and storm water management)
 - And more...

Land Management

- Contaminated sediment management
- Soil and groundwater decontamination/restoration

Contaminated Sediment Management



- Dredged material disposal and treatment
- Site characterization and source ID
- Monitored natural recovery
- Capping
- Innovative capping
- Dredge residuals

Mercury Methylation

- Bench scale experiments designed to provide better understanding of factors (SRBs, sulfate, nutrients) that promote/limit methyl mercury production
- Strategic evaluation of cost effective capping materials designed to sequester Hg and inhibit methylation
- Materials include commercially available clay-based Hg-sorbents and site-specific clay-rich soils; and readily available and local material.

Soil/Groundwater Remediation

- CERCLA Singed in 1980 and amended in 1986
 - -PA/SI
 - -RI/FS
 - PP/ROD
 - -RD/RA
 - -LTM/RAO
 - 5-year review
 - Site closure

LNAPL/Petroleum Hydrocarbons

- Sources: Refineries, distribution terminals, pipelines, storage tanks, service stations, etc.
- LNAPLs: Gasoline, diesel, jet fuels, heating oils, waste oils, weathered fuels, etc.
- Contaminated Soil
 - TPH
 - Vapor (BETX, VOCs)
- Contaminated Groundwater
 - LNAPLs
 - Oil/grease, TPH_{g, d}
 - Dissolved phase
 - BETX, VOCs,
 - MTBE

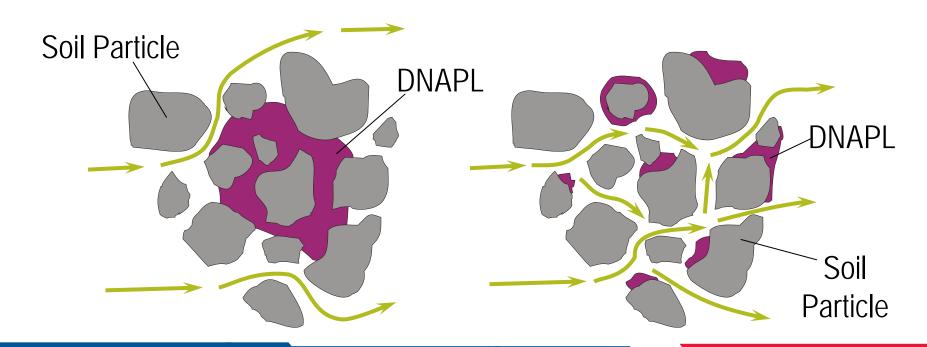
DNAPL/CVOCs

- Heavier than water
- Hard to locate DNAPL pools and residuals
- Fractured bedrock
- Low solubility/high volatility
- Extensive CVOC plumes in vadose and saturated zones
- Varying lateral and vertical extent of contamination
- Costly to delineate source zones and plumes
- Costly to remediate
- Need innovative in situ solutions but must overcome simple physics

Technology Evolution

Technology Progression		Excavation/disposal Pump & treat Biopile/composting/land farming Thormal description
Petroleum Hydrocarbons	Conventional	Thermal desorption Bioslurry teactors Soil washing Soil vapor extraction (SVE) Bioventing Bioslurping Air sparging/biosparging
	Innovative	Monitored natural attenuation Thermal treatments In situ chemical oxidation
		Biobarriers
Chlorinated Hydrocarbons	Emerging	Reactive permeable barriers Enhanced anaerobic dechlorination (EAD) Anaerobic bioventing Sequential anaerobic/aerobic treatment
		_In situ cometabolism
	Developing	Cometabolic air sparging (CAS) Bioaugmentation Bioengineering

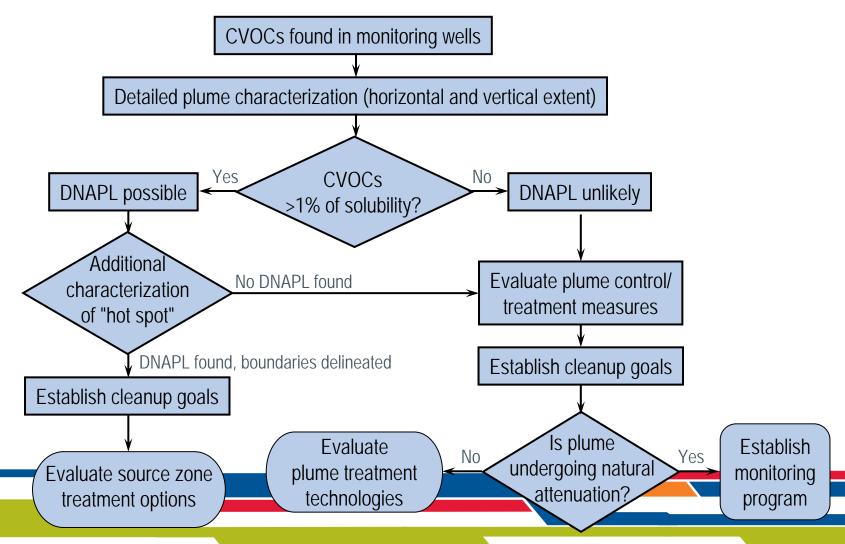
Fundamental Challenges


- All in situ technologies must deliver/distribute agents to where contaminants are
- But subsurface is extremely complex and heterogeneous

Finding/Treating DNAPL

DNAPLs completely filling in pores

DNAPLs coating soil particles



Challenges (DNAPL/CVOCs)

- Regulatory framework
- Technical impractability (TI)
- Monitored natural attenuation (NA)
- Human health risk assessment
- Site characterization
- Source removal vs. plume control
- technology screening/selection

Evaluation/Remediation Steps

DNAPL and CVOC Remediation

- Source zone (DNAPL pools and residuals) when location is known
- Plume control/treatment when location is not known or pools are hard to retrieve
- Plume control
- Plume treatment
- Combined approach

- Thermal
 - Steam injection/extraction
 - Resistive heating/RF heating/SPH
 - Hot water flooding
- Physical/Chemical
 - KMnO₄/fenton's reagent/persulfate
 - Surfactant flushing
 - Cosolvent (e.g., alcohol) flushing
- Containment
- Excavation

Plume Control/Treatment

- Permeable/Reactive barrier with ZVI
- Nano-ZVI particles
- In situ air sparging/SVE (IAS/SVE)
- Bioremediation
 - Cometabolic
 - Bioaugmentation
 - HRC
- Intrinsic bioremediation (NA)
- Pump-and-treat
 - Plume containment at edges
 - Isolating the source
 - Plume remediation

Contaminants to Watch

- Perchlorate
- MTBE
- 1,4-dioxane
- Nitrate
- Endocrine disruptor compounds (EDCs)
- Fluoride
- Metals (As, Cr[VI])
- Radionuclides (U, Ra 226/228, gross α, β emitters)

2010 Monterey Conference

- Characterization, monitoring, and risk Assessment
- Site management and closure
- Green and sustainable remediation
- Chemical oxidation/reduction technologies
- In situ delivery approaches
- Thermal/physical/chemical treatment/barrier technologies
- Biological technologies
- Sediment/vapor intrusion