

2020「中拨祉鄉披樂等金

2020 CTCI Foundation Science and Technology Scholarship

境外生生活助學金

Living Grant for International Graduate Students

Design of MBE in-situ to LTSTM for TMD Thin Film Growth & Characterization

Abhishek Karn^{1,2,3*}, Woei Wu Pai^{1,2}

¹Center for Condensed Matter Sciences, National Taiwan University, Taiwan,

²Department of Physics, National Taiwan University, Taiwan

³Institute of Physics, Academia Sinica, Taiwan,

* Presenting author: Abhishek Karn, email: d06222017@ntu.edu.tw

• MBE Components:

- UHV Chamber: high mean path of evaporated atoms
- Electron gun: materials having higher melting point
- Effusion Cell: material with low melting point
- Manipulator: Facilitated with substrate heating
- RHEED: Monitor layer by layer growth on substrate
- QCM: measures a mass variation per unit area

Introduction

Fig 1: Schematic View of working of MBE setup

- MBE Capability:
- Precise control of growth parameters
- Best suited for thin films growth
- Fabrication of artificial heterostructures
- In-situ to LTSTM can facilitate study of
- low dimension phase transition
- Local density of state
- Transition temperature
- Symmetry breaking

MBE Solidworks Design

- MBE Specification:
 - length 25x20 dia in cm
 - Two transition metal electron gun (V, Pt)
 - Two Knudsen effusion cell for chalcogens (Se, Te)
 - Sample annealing upto 500°C
 - Motor controlled manipulator motion

Fig 2: (a) schematic view of chamber design along with its equipment (b) Model of MBE in-situ to LTSTM (c) MBE completely assembled and installed besides LTSTM chamber (d) Model of manipulator, parking lots and sample plate (e) parking lots, electron gun, manipulator & load lock grabbing sample

MBE Sample Growth and STM Characterization

- VTe₂ a type of TMD material is grown on HOPG substrate.
- Growth Parameters: V:Te = 1:10; Substrate temperature: 280°C; Chamber Pressure: 2.5E-9 torr

Fig 3: STM image at 78K (a,b) first batch 1ML VTe_2 and (c,d,e) second batch 1ML VTe_2 on HOPG substrate, (e) atomic resolution showing 4x4 reported CDW supercell of VTe_2 monolayers, (f,g) STS on monolayer island

- Conclusion:
- Successful design & installation of MBE in-situ to LTSTM
- Instrument testing and calibration is successfully achieved
- 1ML 1T-VTe₂ is successfully grown with reduction in contamination and defects
- LTSTM characterization reveals CDW symmetry and LDOS of 1ML VTe₂

