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Abstract
Every year, fire accidents cause substantial economic losses and casualties. Being able to detect a fire at the early stage is the only way to avoid notable disasters. Deep Neural
Networks (DNN) have become a popular foundation for state-of-the-art safety system. In the present work, we proposed a two-stage cascaded architecture. In the first we
introduced the Spatio-Temporal network, which efficiently and effectively combines both shape and motion flicker based. Besides, to minimize false-positive due to some object

similar to flame, in second original image and heatmap of candidate region are fused for improving abilities of to distinguish whether it is a fire or not.
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