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Research Focus Key Ideas: Method
Motivation: e Assuming dataset contains mostly normal images, trust region memory updates prevent defects from
While existing defect detection models do being learned by pushing away vectors z that are outside of the trust region, which is defined based on
not require detailed labeling of the images, similarity to majority of the data.
they often assume the input data are free of « Perceptual distance uses deep features to capture texture and high-level information in computing
defective images. As a result, these models can distance to normal, making it more suitable for texture similarity.
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which frequently occurs in many manufacturing
facilities. IB
Our Contributions: i
* A defect classification framework resilient to , Perceptual
noise in the training dataset Distance
* A memory update scheme using trust
regions to avoid noise contamination R SN it nss. sl
« A perceptual-based classification method to
effectively detect defective regions for highly
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