o FScholarshi &

%f&‘

Research Scholarship for International Graduate Students

A Study on Deep Learning-based Approaches for Emergency Vehicle Detection

P 4 31 year PhD student: Van-Thuan Tran, Advisor: Prof. Wei-Ho Tsai

TAIPEI
<" TECH

Department of Electronic Engineering, National Taipe1 University of Technology

Abstract

This study investigates deep learning-based approaches for emergency vehicle detection (EVD). Recognizing that car drivers may
sometimes be unaware of the approaching emergency vehicles (EVs), leading to delayed responses, we developed systems that can
accurately detect the nearby EVs based on their siren sound and visual presence, and then alerts drivers to respond appropriately. We applied
audio recognition together with object detection techniques to build EVD systems. The proposed systems will be helpful for preventing
traffic accidents and providing the safety function for autopilot systems.
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Fig 1. Spectrograms of two siren sound examples:
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Fig 2. The framework of the CNN-based ensemble model (SirenNet) Fig 3. The end-to-end CNN model (WaveNet) for A-EVD. @ [
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Table III. Results of the SirenNet and comparison to single networks

Exp erlments & Results Model Accuracy (0/) Model loading Inference
0 & -
time (s) time (s)
SirenNet 98.24 (0.36) (505 — Fig 5. Architecture of the modified YOLOv4 for V-EVD (EVD-YOLO).
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Fig 7. The proposed Audio-Vision-based EVD system.
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important, the ensemble architecture (SirenNet) further boosted the classification accuracy 2. Van-Thuan Tran and Wei-Ho Tsai. “Detection of Ambulance and Fire Truck Siren
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