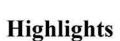

2022「中拨祉科拔獎學金」

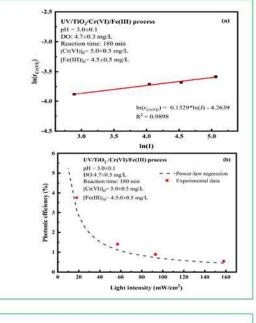
2022 CTCI Foundation Science and Technology Scholarship 境外生生活助學金


Living Grant for International Graduate Students

ΓAIWAN



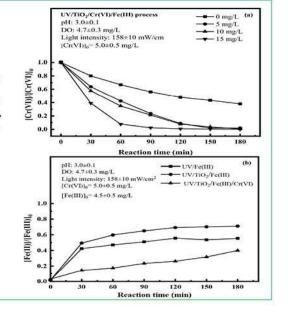
Department of Chemical Engineering, National Taiwan University of Science and Technology



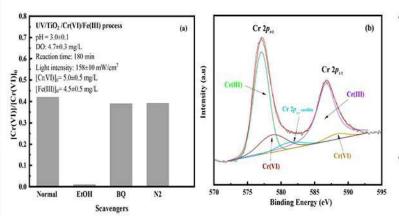
- Fe(III) ions can enhance the photocatalytic reduction efficiency of Cr(VI) by 34% using TiO₂ film under UV illumination
- The photoreduction of Cr(VI) was highly dependent solution pH and occurred quickly in the acidic solution.
- Photogenerated Fe(II) and photogenerated electrons were identified as reactive reducing species.
- First report of dual-site kinetic model and proposed mechanism for the Cr(VI) photoreduction in aqueous solution by UV/TiO₂/Fe(III) process

Effect of Light Intensity

- The removal of Cr(VI) was increased with the increase of UV light intensity (I) and a linear relationship between (I) and $r_{(Cr(VI))}$ with the reaction order against UV irradiance, n = 0.13
- The decreased photonic efficiency could be explained by the limitation of active sites on TiO₂, which reduces the UV light adsorption on the TiO₂ surface.



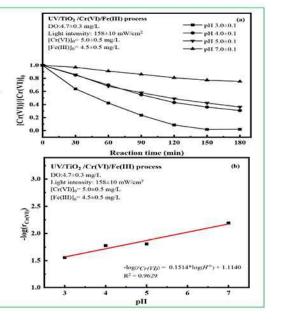
Effect of Fe(III) ions


• Fe(III) presence significantly enhanced the photoreduction of Cr(VI) due to Fe(II) for the chemical reduction of Cr(VI)

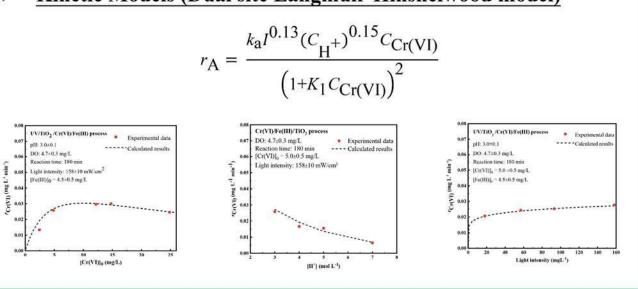
Fe(III) + H₂O + hv
$$\rightarrow$$
 Fe(II) + HO· + H⁺

3Fe(II) + Cr(VI) \rightarrow 3Fe(III) + Cr(III)

Kinetic Study and Mechanism



- Trapping experiment results indicated that photogenerated electrons was responsible for reducing Cr(VI) by TiO₂ under UV irradiation in the presence of Fe(III).
- No competitive influent between Fe(III) and Cr(VI) on TiO₂ surface


Effect of solution pH

- Cr(VI) reduction experiments were conducted at acidic solution (pH 3) to avoid the lack of electrostatic attraction between Cr(VI) species and the surface charge or the precipitation Fe(III)/Cr(III) on the TiO₂ surface.
- The dependence of Cr(VI) photoreduction rate on solution pH by a power function:

$$\log(r_{Cr(VI)}) = 0.15\log([H^+]) - 1.11$$

Kinetic Models (Dual site Langmuir-Hinshelwood model)

*This study was published

Luong, G. K., & Ku, Y. (2022). Enhanced photocatalytic reduction of Cr(VI) in aqueous solution by UV/TiO2 process in the presence of Fe(III); Performance, kinetic, and mechanisms. Chem. Eng. Process, 181, 109135

