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Abstract

The internet of things, artificial intelligence, and high-performance computing can revolutionize agriculture by offering efficient and cost-effective solutions. Implementing IoT technology in agriculture provides
low-cost and simple communication between different smart devices. My research focuses on developing DL models for AloT-based intelligent agriculture monitoring and recommendation systems. This research
focuses on the development of a DL-based adaptive data rate algorithm tailored specifically for LoRa and LoRaWAN networks within the vast IoT domain. The objective is to facilitate intelligent resource
allocation in these networks to meet diverse communication requirements. Additionally, this research aims to overcome scalability challenges while investigating the influence of various factors on link quality,
network performance, and link-level performance. Advanced Al and DL techniques are employed to enhance the efficiency and effectiveness of agriculture monitoring systems. These techniques enable the
extraction of valuable insights from collected data, contributing to higher yields while minimizing environmental impact.
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